6.808: Mobile and Sensor Computing aka IoT Systems

http://6808.github.io

Lecture 4: Seeing Through Walls & Device-Free Localization

Course Staff	Announcements
Lecturers: Fadel Adib (<u>fadel@mit.edu</u>) Hari Balakrishnan (<u>hari@csail.mit.edu</u>)	1- Lab 0 checkoff this week (in OH) 2- Lab 1 out; due Feb 14
TAs: Maya Nielan (<u>mnielan@mit.edu</u>) Saved Saad Afzal (afzals@mit.edu)	3- PSet 1 out; due Feb 28

Today in IoT

Device in another room

Applications

Objectives of this Lecture

Learn the fundamentals, applications, and implications of **wireless sensing**

- 1. What are the basic principles of wireless sensing?
- 2. How can we obtain centimeter-scale localization from wireless reflections?
- 3. What are the possibilities of sensing beyond localization?
- 4. What are the industry opportunities and societal implications of wireless sensing (today and in the near+far future)?

Measuring Distances

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Measuring Reflection Time

Option1: Transmit short pulse and listen for echo

Capturing the pulse needs sub-nanosecond sampling

Why?

and why was this not a problem for Cricket?

Capturing the pulse needs subnanosecond sampling Why?

Multi-GHz samplers are expensive, have high noise, and create large I/O problem Distance = time x speed

Why was this not a problem for Cricket?

because speed of ultrasound

$$10cm = \Delta t \times 345$$

SamplingRate = $\frac{1}{\Delta t} \approx 3kbps$

FMCW: Measure time by measuring frequency

How does it look in time domain? (and in comparison to single frequency)

FMCW: Measure time by measuring frequency

How do we measure ΔF ?

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

let's talk about FFTs a bit

Basics of Fourier Transform

Measuring ΔF

- Subtracting frequencies is easy (e.g., removing carrier in WiFi)
- Done using a mixer (low-power; cheap)

Signal whose frequency is ΔF

$\Delta F \rightarrow Reflection Time \rightarrow Distance$

<u>Challenge:</u> Multipath → Many Reflections

The direct reflection arrives before dynamic multipath!

Mapping Distance to Location

Person can be anywhere on an ellipse whose foci are (Tx,Rx)

By adding another antenna and intersecting the ellipses, we can localize the person

From Location to tracking (over time)

What are some challenges for WiTrack?

How would you overcome these challenges?

Fails for multiple people in the environment, and we need a more comprehensive solution

How can we deal with multi-path reflections when there are multiple persons in the environment? Idea: Person is consistent across different vantage points while multi-path is different from different vantage points

Combining across Multiple Vantage Points Experiment: Two users walking Setup Single Vantage Point 8 Distance (meters) 6 3 0 -2 -1 0 1 Distance (meters) -3 -4 2 3 4

<u>Mathematically:</u> each round-trip distance can be mapped to an ellipse whose foci are the transmitter and the receiver

Mapping 1D to 2D heatmap

Combining across Multiple Vantage Points Experiment: Two users walking Setup Two Vantage Points 8 Distance (meters) 0<u>4</u> -2 -1 0 1 Distance (meters) -3 2 3 4

Combining across Multiple Vantage Points Experiment: Two users walking Setup 16 Vantage Points 8 Distance (meters) N & A G 0 0 -4 -3 -2 2 -1 0 1 Distance (meters) 3 2 4 Localize the two users

How can we localize static users?

Dealing with multi-path when there is one moving user

We eliminated direct table reflections by subtracting consecutive measurements

Needs User to Move

Dealing with multi-path when there is one moving user

We eliminated direct table reflections by subtracting consecutive measurements

Needs User to Move

Exploit breathing motion for localize static users

 Breathing and walking happen at different time scales

-A user that is pacing moves at 1m/s

-When you breathe, chest moves by few mm/s

 Cannot use the same subtraction window to eliminate multi-path

30ms subtraction window

3s subtraction window

Want a silhouette

Who is behind the wall?

How is the person standing?

Writing in the air Our Tracking Result

Device

Where is Wireless Sensing today?

1. Research-wise:

- Sensitivity: close to ECG in measuring micro-cardiac events (2020)
- Reconstruction: can recover 3D human skeleton + meshes (2020)
- Can monitor new affective metrics: stress levels (2021)
- Technologies: WiFi, millimeter wave, etc.

2. Real-world Uses:

- Multiple startups in the space
- Medical use in monitoring 1,000s of patients with Alzheimer's, Parkinson's, COVID-19, Multiple Sclerosis, etc.
- Influenced the design of sensors like Google Soli and others

3. Standards:

- Upcoming WiFi standard (802.11bf)
- Planning for 6G

How can you use this technology in the metaverse?

Objectives of this Lecture

Learn the fundamentals, applications, and implications of **wireless sensing**

- 1. What are the basic principles of wireless sensing
- 2. How can we obtain centimeter-scale localization from wireless reflections?
- 3. What are the possibilities of sensing beyond localization?
- 4. What are the industry opportunities and societal implications of wireless sensing (today and in the near+far future)?

1- Lab 0 checkoff this weekTODO: 2- Lab 1 due on Valentine's day3- PSet 1 due Feb 28

Start thinking about your projects