Welcome!

6.808: Mobile and Sensor Computing aka IoT Systems

http://6808.github.io

Lecturers: Fadel Adib (<u>fadel@mit.edu</u>) Hari Balakrishnan (<u>hari@csail.mit.edu</u>) <u>TAs:</u> Maya Nielan (<u>mnielan@mit.edu</u>) Saad Afzal (<u>afzals@mit.edu</u>)

Course Staff email: 6808@mit.edu

Slack: https://mit-6808.slack.com/

Maya Nielan (<u>mnielan@mit.edu</u>)

Sayed Saad Afzal (<u>afzals@mit.edu</u>)

Internet of Things

Convergence of micro-sensing, computation, and communication that allows us to:

- Acquire (sense) data from the environment
- Pre-process data locally (on-device / "edge")
- Deliver data to servers ("cloud")
- Draw inferences and provide insights about the world from the data:
 - Sensor fusion, data integration
 - Signal processing
 - Machine learning
- Control actions in the environment

Focus of 6.808: how we got to now and how could it transform the future

September 2021

Global IoT market forecast (in billion connected IoT devices)

Note: IoT Connections do not include any computers, laptops, fixed phones, cellphones or tablets. Counted are active nodes/devices or gateways that concentrate the end-sensors, not every sensor/actuator. Simple one-directional communications technology not considered (e.g., RFID, NFC). Wired includes ethernet and fieldbuses (e.g., connected industrial PLCs or I/O modules). Cellular includes 2G, 3G, and 4G. LPWAN includes unlicensed and licensed low-power networks. WPAN includes Bluetooth, Zigbee, Z-Wave, or similar. WLAN includes Wi-Fi and related protocols. WNAN includes non-short-range mesh, such as Wi-SUN. Other includes satellite and unclassified proprietary networks with any range.

Source: IoT Analytics Research, September 2021 – Please remember to cite IoT Analytics as the source (with link) when re-sharing this content as per our copyright policy

Total number of device connections (incl. Non-IoT)

20.0Bn in 2019- expected to grow 13% to 41.2Bn in 2025

Note: Non-IoT includes all mobile phones, tablets, PCs, laptops, and fixed line phones. IoT includes all consumer and B2B devices connected – see IoT break-down for further details

Source(s): IoT Analytics - Cellular IoT & LPWA Connectivity Market Tracker 2010-25

Your Global IoT Market Research Partner

IoT Enterprise Spending 2020 – 2025

Note: IoT Analytics defines IoT as a network of internet-enabled physical objects. Objects that become internet-enabled (IoT devices) typically interact via embedded systems, some form of network communication, or a combination of edge and cloud computing. The data from IoT-connected devices is often used to create novel end-user applications. Connected personal computers, tablets, and smartphones are not considered IoT, although these may be part of the solution setup. Devices connected via extremely simple connectivity methods, such as radio frequency identification or quick response codes, are not considered IoT devices. . a: Actuals, f: Forecast **Source**: IoT Analytics Research 2021

Insights that empower you to understand IoT markets

Connected solutions bring increased vehicle uptime for our customers, better safety for drivers, operators and other road users and of course – less emissions of carbon dioxide.

- Martin Lundstedt, CEO of the Volvo Group, Oct 2019

IoT is Transforming Industries

Transportation & Smart Cities

Medicine

Smart Homes

Health & Wellness Connected Vehicles

Precision Agriculture

Example systems we will cover Transportation & Smart Cities

CarTel Project at MIT (2005-2011)

* 96% 🗲

Andrew P

Puopolo, J

Boston

Pothole Patrol

Road Safety

50 MILLON Road injuries per year

\$1.8 TRILION Loss costs per year

Traffic Fatalities Up 18% in H1 2021

20,160 U.S. Traffic Fatalities

Largest 6-Month Increase Ever Recorded

← NEWS

NHTSA @NHTSAgov

Really? Yes, really.

2020 Fatality Data Show Increased Traffic Fatalities During Pandemic

Vehicle dynamics

Map-matching

Automatic recording

Distraction

Transport mode & driver/ passenger

Low battery drain

Mileage & speed

Real-time crash detection

Sensor data → Trip details

IoT Systems are designed along 4 quadrants

IoT Systems are designed along 4 quadrants

Sensing Tasks & Modalities

Computation

Power/Energy

Connectivity

Sensing Tasks and Modalities

Computation

HOW can we use the sensing modalities to achieve the sensing task?

(1)Programming model

(2) Data

Management

- Embedded
- Mobile
- Edge/Cloud

- Storage
- Queries

(3) Signal Processing & Inference

- Digitization
- Inference & Machine Learning

(4) Security

- Digital, Analog
- Trust, Privacy

Connectivity

Power/Energy

HOW will we power the nodes? And what are the energy constraints?

(1) Infrastructure

• Electricity, Network

(2) Battery

• Rechargeable/Non

- Ambient, Wireless power
- Solar, Waves, Human Activity, RF

IoT Systems are designed along 4 quadrants

Sensing Tasks & Modalities

Computation

Power/Energy

Connectivity

Indoor Positioning (Cricket, 2001)

Accurate Localization (Cricket, 2003)

Device-Free Localization (WiTrack, 2014)

Device in another room

Seeing Through Walls (RF-Capture, 2015)

Al Senses People Through Walls

Breath Monitoring using Wireless (Vital-Radio, 2015)

Non-contact Respiration Monitoring

EMERALD 👹

 Technology has been used in monitoring a COVID-19 Patient

Deployed in *Heritage Assisted Living* in Boston suburb

Medical doctors from Harvard Medical
 School analyzed remotely

Monitoring COVID-19 Patient

The patient's breathing decreased as it went back to normal

The patient's movements also demonstrate a marked improvement.

Let's zoom in on respiration signals

Baby Monitoring

Mobile Security Case Study: Inaudible Voice Commands

Can hack Android/Alexa using inaudible voice commands

Split Processing

Case Study: Continuous Object Recognition

Continuous Object Recognition (Glimpse, 2015)

All processing done on server

With Glimpse with on-phone object tracking assistance

End-to-end IoT System

Case Study: Precision Agriculture

Taking the Internet of Things Underwater

"More than 95% of ocean remains unobserved and unexplored."

Less than 1 in a million of IoT is underwater, even though oceans cover more than 70% of the planet

9 out of 10 marine organism undiscovered

Aquaculture is the "fastest growing food sector"

- UN Food & Ag org, 2022

Hydrophone receiver Projector (speaker)

LED

Batteryless sensor

Large Experimental Pool

connected to circuit

Course Organization

Grading:

- 1 Course Project (40%)
- 4+1 Labs (25%)
- 1 Quiz: April 13, during lecture (15%)
- 2 PSets (10%)
- Participation (10%)
 - Includes answering questions before every lecture
 - May skip one review without affecting grade
 - Attendance is mandatory

Website: http://6808.github.io

Slack: https://mit-6808-2022.slack.

Late +Pset lab policy: 72 hours

Upcoming: iOS Tutorial (time & place TBA based on poll)

Attendance is mandatory Zoom will be fall-back for medical reasons

> Counts toward: AUS2, DLAB2, II requirements

Complete Poll Now

iOS Labs (Need iPhone/iPad and Mac)

iPad loaner:

- request via this form http://kb.mit.edu/confluence/x/QYK6CQ
- We also have some iPhones to loan if IS&T run out

Mac loaner (first-come first-serve):

request via this form http://kb.mit.edu/confluence/x/GQdS

Please request them asap, will send the links in Slack

Projects

Students have most fun & learn most from the projects

- All projects involve system implementation
- Ideal group size: 3
- Will suggest project ideas; students can choose their own projects

Timeline:

- Proposal (1-2 pages): March 16
 - We meet on March 30 & April 4 (during class time) to give feedback
- Project Final Components Due: April 6
- Project titles & abstracts: May 12
- Project demos & presentations: May 19

Sample 6.808 Projects 2021

1. ATTACH SENSORS

Arduino Schematic

Arduino Nano 33 IoT: 57 mA (with BLE) Ultrasonic Sensor: 15 mA Total: 72 mA

Battery: 8000 mAh Duration: 8000/72 ≈ 111 hours

6

Monday	Tuesday	Wednesday	Thursday	Friday
Jan 31 <i>First day of classes</i> LEC 1: Introduction and Key Ideas Assigned: Lab 0	Feb 1	Feb 2 LEC 2: Fundamentals of IoT Localization Preparation: Read Location-based Services, Wikipedia: GPS (Questions)	Feb 3	Feb 4 iOS Tutorial
Feb 7 LEC 3: Practical Device-based Localization (indoor & outdoor) Preparation: Read Cricket, RADAR (Questions) Assigned: Lab 1 Assigned: Pset 1 DUE: Lab 0	Feb 8	Feb 9 LEC 4: Seeing through Walls & Device-Free Localization Preparation: Read WiTrack (Questions)	Feb 10	Feb 11
Feb 14 LEC 5: Network Connectivity (BLE, low-power WAN, Wi-Fi, cellular, 5G) Assigned: Lab 2 DUE: Lab 1	Feb 15	Feb 16 LEC 6: Mesh and Multi-Hop Wireless Networks Preparation: Read ETX (Questions)	Feb 17	Feb 18
Feb 21 Presidents' Day	Feb 22 Monday schedule LEC 7: Batteryless Connectivity & Smart Cities Preparation: Read Hacking RFIDs and Caraoke (without section 8) (Questions)	Feb 23 LEC 8: Intro to Inertial Sensing; Activity Recognition Preparation: Read Developments of Inertial Sensing and Principles of Inertial Sensing (Section 3.1 and 3.2 only) (Questions) Assigned: Lab 3 DUE: Lab 2	 <u>New Topics:</u> IoT startups Predicting road crash rates Augmented reality 	
Feb 28 LEC 9: Pothole detection Preparation: Read Pothole Patrol (Questions) DUE: Pset 1	Mar 1	Mar 2 LEC 10: Crash Mapping Preparation: Read Improving Street Maps (Questions)		
Mar 7 LEC 11: Health & Vitals sensing Preparation: Read Vital-Radio and Smartphone-based Hemoglobin sensing (plus Optional Reading on HemaApp) (Questions) Assigned: Lab 4 Assigned: Pset 2 Assigned: Project Proposal Instructions DUE: Lab 3	Mar 8	Mar 9 LEC 12: Attacks on Acoustic Sensing Preparation: Read BackDoor (Questions)		
Mar 14 LEC 13: Mobile & Augmented/Mixed Reality (real-time object recognition) Preparation: Read Glimpse (Questions)	Mar 15	Mar 16 LEC 14: Agriculture IoT Preparation: Read FarmBeats (Questions) DUE: Project Proposals	Mar 17	Mar 18
Mar 21 Spring Break	Mar 22 Spring Break	Mar 23 Spring Break	Mar 24 Spring Break	Mar 25 Spring Break
Mar 28 LEC 15: Ocean IoT Read Underwater Backscatter Networking (Questions) DUE: Lab 4	Mar 29	Mar 30 Project meetings (No lecture; meet with staff during class time)	Mar 31	Apr 1
Apr 4 Project meetings (No lecture; meet with staff during class time) DUE: Pset 2	Apr 5	Apr 6 TBD DUE: Ship project components	Apr 7	Apr 8 Quiz Review Session
Apr 11 Midterm during lecture time	Apr 12	Apr 13 Project meetings (No lecture; meet with staff during class time)	Apr 14	Apr 15
Apr 18 Patriots' Day	Apr 19 Drop date	Apr 20 Project meetings (No lecture; meet with staff during class time)	May 21	Apr 22
Apr 25 Project meetings (No lecture; meet with staff during class time)	Apr 26	Apr 27 Project meetings (No lecture; meet with staff during class time)	Apr 28	Apr 29
May 2 Project meetings (No lecture; meet with staff during class time) DUE: Project Titles and Abstracts	May 3	May 4 Project meetings (No lecture; meet with staff during class time)	May 5	May 6
May 9 Presentation DUE: Presentations and Demos	May 10 Last day of classes	May 11	May 12	May 13 Finals begin

Deep learning helps predict traffic crashes before they happen

A deep model was trained on historical crash data, road maps, satellite imagery, and GPS to enable high-resolution crash maps that could lead to safer roads.

Rachel Gordon | MIT CSAIL October 12, 2021

How to Read a Paper

First Pass:

- Title, Abstract
- Figures (illustrations? important results?)
- skim intro & conclusions
- References

Second Pass

- Intro in details
- Overview, related work, or background sections
- Figures in details

Third pass:

- Read in detail
- Mark references for future read

What you are Expected to Learn from This Class

Lectures & Papers:

- Fundamentals of IoT technologies (mobile and sensor computing)
- How is IoT applied across various industries?
- What are emerging IoT domains and what does the future of IoT look like?

Labs:

- iOS APIs, including Bluetooth, inertial, UI programming
- Hacking wireless signals (New)

Project:

- Build a Physical IoT project using material learnt from class
- Collaboration (groups of 3)

Introductions

- Name
- Year
- Major
- Why are you interested in this class?

Next Class

1) Chapter on Localization + GPS

Covers fundamentals and GPS

2) Following Class

2 case studies of localization: Cricket and RADAR papers

TODO:

- Lab0 is out
- Fill in survey
- Attendance is mandatory
- Join Slack!
- Read assigned papers + answer pre-class question