

6.808: Mobile and Sensor Computing aka IOT Systems

http://6808.github.io

Lecture 7: Batteryless Sensors and Smart Cities

Some slides adapted from Haitham Hassanieh (UIUC) & Omid Abari (UCLA)

Course Staff		Announcements
<u>Lecturer</u> Hari E	r <mark>s:</mark> Fadel Adib (<u>fadel@mit.edu</u>) Balakrishnan (<u>hari@csail.mit.edu</u>)	1- PSet 1 due Feb 28 2- Lab 2 out; due March 2
<u>TAs:</u>	Maya Nielan (<u>mnielan@mit.edu</u>)	
Sa	ayed Saad Afzal (<u>afzals@mit.edu</u>)	

Today in IoT

18 hours ago - Technology

Ending 3G service sparks fears of an "alarmaggedon"

Objectives of the Three Lectures Series

Learn the fundamentals, applications, and implications of **IoT connectivity technologies**

Objectives of the Three Lectures Series

Learn the fundamentals, applications, and implications of **IoT connectivity technologies**

- 1. What is the overall IoT system architecture?
- 2. What are the various classes of connectivity technologies? And how do we choose the "right" technology for a given application?
- 3. What are various routing architectures for wireless networks & IoT systems?
- 4. How does energy impact IoT device design? And how do batteryless IoT systems work? this

lecture

tmacy*s

1 Iululemon

Forbes

How RFID Helps Retail Companies Save Money

Walter Loeb Senior Contributor @ Retail

Loeb Loever major developments in the retail industry.

Feb 26, 2018, 08:44pm EST | 7,461 views

Japan Aims To Automate All Convenience Stores By 2025 With A New RFID Technology

Akiko Katayama Contributor @ Food & Drink

🕓 This article is more than 2 years old.

RFID (Radio Frequency IDentification)

Access Control

Inventory control

Security Sensitive Applications

Long-Range Payment Systems

RFID (Radio Frequency IDentification)

Access Control

Inventory control

> 100 Billion in the world

MUST READ: Everything you need to know about the Microsoft Exchange Server hack

PART OF A ZONET SPECIAL FEATURE: CORONAVIRUS: BUSINESS AND TECHNOLOGY IN A PANDEMIC

Humble hero: How RFID is helping end the pandemic

A common technology takes on an uncommon mission: Distributing vaccines around the globe.

Basic Principle of Operation

RFID: cheap battery-free stickers

History of RFIDs

- WWII: Aircraft IFF Transponder
 - Identify Friend or Foe, Transmitter-Responder
- 1945: "The Thing" or "The Great Seal Bug"
 - "Gift" given by the Soviets to American ambassador
- 1980s: development of E-Toll transponders
- 2004: Auto-ID lab at MIT led to the birth of modern battery-free RFIDs
 - Goal: supply chain chain optimization
 - Paper: "Towards the 5 cent tag"

Power consumption

Types of RFIDs Frequency Range the vast majority of UHF **RFIDs** (~900MHz) HF Cost (13.56MHz) few cents 10s to 100s ΙF of S Power (120-150kHz)

Other less common versions: 2.4GHz, UWB (3-10GHz), etc.

Passive

battery-free)

Semi-Passive

or Semi-Active (with battery)

consumptior

Active

How does an RFID power up? Harvests Energy from Reader's Signal

Inductive Coupling

LF HF (120-150kHz) (13.56MHz)

> Magnetic (Near Field)

Coil

Radiative

UHF (~900MHz)

Electromagnetic (Far Field)

Antenna

Inductive Coupling

How to power in HF/LF?

operation range

What other technologies operate like this?

Inductive Coupling

- Magnetic field also induced in the reverse direction (mutual inductance)
- By turning a switch (transistor) on/off, the tag can communicate bits that are sensed due to the mutual coupling

After powering up

- 1. RFID switch turns on/off (to communicate data in binary)
- 2. this impacts current in the reader (due to mutual inductance)
- by sensing current change b/w two states, the reader cab decide the transmitted bits

How does the receiver decode?

• Senses changes in the current

UHF Backscatter Communication

'1'

'0'

- A flashlight emits a beam of light
- The light is reflected by the mirror
- The intensity of the reflected beam can be associated with a logical "0" or "1"

Backscatter Communication

Backscatter Communication

Tag reflects the reader's signal using ON-OFF keying

Reader shines an RF signal on nearby RFIDs

Uplink Communication

Simplified RFID schematic

Uplink Communication

EPC Gen2 Standard - MAC

Slotted Aloha:

- Reader allocates Q time slots and transmits a query at the beginning of each time slot
- Each tag picks a random slot and transmits a 16-bit random number
- In each slot:
 - RN16 decoded \rightarrow Reader ACKs \rightarrow Tags transmits 96-bit ID
 - Collision \rightarrow Reader moves on to next slot
 - No reply \rightarrow Reader moves on to next slot

EPC Gen2 - MAC

Let's consider an example with Q=4, no tag; and Q=4, 1 tag

Inefficient:

- If reader allocates large number of slots \rightarrow Too many empty slots
- If reader allocates small number of slots \rightarrow Too many collisions

EPC Gen2 - MAC: Minimizing Collisions

- N RFID Tags & K Time slots
- Each tag picks a slot uniformly at random to transmit in
- Let's assume the reader knows the number of tags N; how should it set K? (And once we know it, what is the efficiency?)

- Hint: goal is to maximize the number of "useful" slots
 - What is a useful slot?

EPC Gen2 - MAC: Minimizing Collisions

- N RFID Tags & K Time slots
- Each tag picks a slot uniformly at random to transmit in
- Let's assume the reader knows the number of tags N; how should it set K?
- Probability that a tag transmits in a given slot:

$$p = \frac{1}{K}$$

• Probability that any tag transmits in a given slot without collision:

$$E = Np(1-p)^{N-1}$$

• To maximize E, set:

$$\frac{dE}{dp} = 0$$

• p=1/N => K=N

EPC Gen2 - MAC: Minimizing Collisions

- N RFID Tags & K Time slots
- Each tag picks a slot uniformly at random to transmit in
- Let's assume the reader knows the number of tags N; how should it set K?
- Probability that a tag transmits in a given slot:

$$p = \frac{1}{K}$$

• Probability that any tag transmits in a given slot without collision:

$$E = Np(1-p)^{N-1}$$

- To maximize E, set K = N
- Efficiency:

Efficiency =
$$E = \left(1 - \frac{1}{N}\right)^{N-1}$$

Efficiency $\leq \lim_{N \to \infty} E = \frac{1}{e} = 0.37$

EPC Gen2 - MAC

Inefficient:

- If reader allocates large number of slots \rightarrow Too many empty slots
- If reader allocates small number of slots \rightarrow Too many collisions
- If reader knows number of tags = N \rightarrow Allocate K=N slots \rightarrow 37% efficiency
- Downlink overhead

Significant work on "spanning trees", efficient scanning, decoding with collisions, etc.

MobiCom 2018, New Delhi, India

Challenge: RFID Hacking for Fun and Profit

Ju Wang, Omid Abari and Srinivasan Keshav

{ju.wang,omid.abari,keshav}@uwaterloo.ca

What's the basic approach?

An E-Toll Transponder Network for Smart Cities

Smart City Services

TrafficDetectSmartManagementRed-Light RunnerParking

<u>Key Problem</u>: each service needs a new infrastructure

Smart Parking

Traffic Management

1) ONE Infrastructure

2) Ease of Maintenance

3) We don't want to add new devices to cars

Electronic Toll Transponders

Some states have made it mandatory

Opportunities

One infrastructure for many smart services

Challenge: Interference

Wireless query

One car responds

Wireless query All cars respond

How can we decode transponders despite Interference?

How can we decode transponders despite Interference?

One Transponder Responds \rightarrow Decodable

Time

Multiple Transponders Respond

Count cars: How to count despite interference?

Variability due to manufacturing process

Can count despite interference

nequency

Evaluation

- MIT campus- four streets
- Caraoke readers were placed on 12.5-feet poles
- Standard E-ZPass transponders on the cars

One infrastructure for many smart services

Caraoke

• A system for delivering smart services using existing e-toll transponders

• Can count, localize and decode transponders in the presence of interference

• Built into a small PCB

Bonus:

Application of Batteryless RFID Localization to Robotic Picking

signal kinetics

extending human and computer abilities in sensing, communication, and actuation through signals and networks

Antennas mounted on

Summary of Lecture

- RFID background, history, and applications
- Types of RFIDs (LF, HF, UHF. Passive, Active)
- Principles of operation: energy harvesting & backscatter communication
- Etoll transponders for smart cities
- Dealing with interference
- Localization by leveraging known constraints

Objectives of the Three Lectures Series Learn the fundamentals, applications, and implications of

IoT connectivity technologies

- 1. What is the overall IoT system architecture?
- 2. What are the various classes of connectivity technologies? And how do we choose the "right" technology for a given application?
- 3. What are various routing architectures for wireless networks & IoT systems?
- How does energy impact IoT device design? And how do batteryless IoT systems work?

TODO:1- PSet 1 Due Feb 282- Lab 2 due March 2